
SIMULATION OF HEAT AND AERODYNAMIC PROCESSES
IN REGENERATORS OF CONTINUOUS AND PERIODIC
OPERATION. I. NONLINEAR MATHEMATICAL MODEL
AND NUMERICAL ALGORITHM

V. P. Kovalevskii UDC 621.438.536.24

A mathematical model for investigating the processes in regenerator heat exchangers is described. A finite-dif-
ference scheme of numerical integration is proposed for solving the conjugate problem on unsteady heat ex-
change between one-dimensional flows and a two-dimensional matrix wall. The data of test calculations have
been compared with the data of other authors. The quasistationary and dynamic processes in a gas-turbine
plant regenerator with a matrix of gauzes have been investigated. The optimum design parameters of such a
regenerator and rotor speeds providing a maximum heat efficiency of the regenerator at minimum aerody-
namic drags in it have been determined.

Introduction. Two types of regenerators — regenerators of continuous and periodic operation — have re-
ceived the widest acceptance [1, 2]. In a continuous-operation regenerator, a cylindrical or a drum matrix rotates rela-
tive to the inlet and outlet pipes with a constant speed, and heat-transfer agents flow through them continuously. A
Ljungstro

..
m regenerator with a rotating matrix and stationary branch pipes and a Rothemu

..
hle regenerator with rotating

branch pipes and a stationary matrix are typical of this type of regenerator. In a periodic-operation regenerator, the ma-
trix occupies the volume of the body through which the heat-transfer agents are alternately passed. Such a regenerator
has a very high heat efficiency. The volume of the regenerator matrix, all things being equal, is much smaller than the
volume occupied by the heating surfaces of the recuperative heat exchanger [1–3].

Regenerators are traditionally calculated using linear quasistatic equations with stationary or semi-empirical
nonstationary coefficients [1–7]. Such methods and mathematical models [8–13] work well at the initial stages of cal-
culation of the regenerator design.

Numerical mathematical models are usually used for verification and investigation calculations and therefore
include relations differing from the above-mentioned equations. For example, in the model developed in [14, 15] the
longitudinal heat conduction is taken into account. In the model of [16, 17], the finite value of the transverse heat
conduction is considered. In [18], investigations were carried out with account for the finite values of the heat conduc-
tion in both directions. The heat accumulated in the flows of heat-transfer agents has been estimated in [19, 20], and
a detailed classification of leakages in a regenerator and a method of calculating them have been developed in [21].

The numerical mathematical model developed by us makes it possible to simultaneously take into account the
following factors: (1) propagation of heat in the wall of the regenerator matrix in the directions parallel and perpen-
dicular to the flows of heat-transfer agents; (2) distribution of the local heat-transfer coefficients and drag coefficients
along the length of the channel; (3) dependence of the thermophysical properties of the heat-transfer agents and the
matrix material on the temperature; (4) transport of heat-transfer agents in the matrix and leakages in the packings and
in the means for turning the flows; (5) accumulation of heat and mass in the flows of heat-transfer agents; (6) time
for which the channels are packed or the time of switching the sections; (7) possibility of using multilayer matrices
piecewise-constant in height with straight channels or packings of plates formed to shape, spheres, cylinders, rings,
gauzes, or other bodies of various materials. With this model, one can describe the processes occurring in the above-
mentioned types of regenerators and in their matrices.

Physical Model. Figure 1 shows diagrams of regenerators of continuous (a, b) and periodic (c) operation. The
gas and air, fed to the input of a regenerator, have different pressures and temperatures. Their flow rates are, respec-
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tively, Gg,in and Ga,in. The processes in the regenerators considered will be investigated without regard for the second-
order factors: (1) end and collector effects in the input and output pipes; (2) difference between the flow sections and
the thickness of the matrix channel wall; (3) existence of blocked or defect channels; (4) heat conduction of the matrix
material in the circumferential direction; (5) possibility of partial condensation of water vapor in the output cross sec-
tions; (6) inertial forces and components of the kinetic and potential energy.

If the processes occurring in parallel radial channels of disk matrices and channels coincident with one and
the same generatrix of drum matrices are identical, the operation of any regenerator can be investigated by the exam-
ple of an individual channel haveng a definite cross section and an arbitrary shape (see Fig. 2a). The outer surface of
the channel wall is heat-insulated due to its symmetry. The heat capacity and heat conduction of the wall are deter-
mined by the local temperature θ(y, z), where y is the coordinate coincident with the line measuring the thickness of
the matrix wall and z is the coordinate directed along the channel and coincident with the direction of the gas flow.

The gas fed to the input of the channel during a heating cycle of length τg has a flow rate Gg,in
1 , a tempera-

ture ϑ in, and a pressure pg,in. The local coefficient of heat transfer from the gas to the wall αg and the losses in the
pressure d∆pg of the gas that has travelled a distance dz in the channel are determined by the local temperature, pres-
sure, and velocity of the gas. The heat conduction, heat capacity, density, and dynamic (kinematic) viscosity are also
determined by the current parameters of the gas. As the heating time τg passes, the gas in the channel does not move
for the time τp. The time τp is the time for which the channel is packed (in a continuous-operation generator) or the
time for which the valves are turned in a periodic-operation regenerator. The gas and channel-wall temperatures equal-
ize for this time.

As the time τg + τp passes, the air with input parameters Ga,in
1 , tin, and pa,in and parameters distributed along

the channel αa, λa, cpa, and ρa moves in the channel in the direction opposite to the gas-flow direction during the
cooling cycle τa. The channel wall cools and gives up its heat to the air. At the instant of time τg + τp + τa, the air
ceases to move and the channel becomes packed once again for the time τp. After the cycle (revolution) with a period
τc = τg + τp + τa + τp is completed, the process is repeated from its initial stage.

Mathematical Model. The above-described processes in a regenerator-matrix channel can be defined by the
system of energy- and mass-conservation equations for the gas and air flowing in it and the heat-conduction equation
for the matrix, including the corresponding initial, boundary, and conjugation conditions and closing relations.

Fig. 1. Diagrams of a continuous-operation regenerator (COR) with a disk (a)
and a drum (b) matrix and a periodic-operation generator (POR) (c). Arrows
denote the types of possible flows of heat-transfer agents: 1) flow of air to the
gas caused by the large difference between their pressures; 2) flows of heat-
transfer agents in the channels of the rotating COR matrix and alternating flow
of heat-transfer agents in the POR; 3) air and gas flows past the matrix.
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The energy- and mass-conservation equations for the gas and air flowing in opposite directions in a channel
of N sections piecewise-constant in geometry for the time τc are as follows:

at 0 < τ ≤ τg + τp:

Slcvg 
∂ρgϑ

∂τ
 + 

∂Ggcpgϑ
∂z

 = Πlqg , (1)

Sl 
∂ρg

∂τ
 + 

∂Gg

∂z
 = 0 , (2)

qg = qb,g + n 



αg [θb − ϑ] + εr,g [θabs,b

4
 − ϑabs

4
]




 ; (3)

at τg + τp < τ ≤ τc:

Slcva 
∂ρat

∂τ
 + 

∂Gacpat

∂ (L − z)
 = Πlqa ,

(1′)

Fig. 2. Elementary channels (a) (arrows denote the directions of the gas and
air flows), example of a grid region of integration (b) over the matrix wall for
a gas flow (the enumeration of the points i = 0, 1, ..., I along the length of
the channel is given in the left part of the figure, the enumeration of the
points j = 0, 1, ..., J along the calculated thickness is given in the bottom part)
and an air flow (the enumeration of the points i = 0, 1, ..., I along the length
of the channel is given in the right part of the figure), and a pattern of inte-
gration (c) of the two-dimensional heat-conduction equation by the locally two-
dimensional method: 1) direction of the first run-through; 2) direction of the
second run-through.
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Sl 
∂ρa

∂τ
 + 

∂Ga

∂ (L − z)
 = 0 , (2′)

qa = qb,a + n 



αa [θb − t] + εr,a [θabs,b

4
 − tabs

4
]




 ; (3′)

l = 1, 2, ..., N .

Expressions (3) and (3′) for the specific heat flow q at mixed boundary conditions of the second, third, and fourth
order on the outer surfaces will be used hereafter for formulation of the boundary conditions for the heat-conduction
equation. Here, n is the projection of a unit vector normal to the boundary surface considered, qb is the projection of
the boundary heat-flow vector (at the second-order condition) whose positive direction coincides with the coordinate-
axis direction, and εr = εbσ0 is the reduced degree of blackness.

The nonstationary two-dimensional distribution of heat over the N layers of the channel wall in the z direction
is defined, in the general case, by the heat-conduction equation

clm (θ) ρlm 
∂θ
∂τ

 =  ∑ 

π=−1

2

 bπ 
∂

∂xπ
 



λlm (θ) kπ 

∂θ
∂xπ




 , (4)

where l is the index of the layer considered (l = 1, 2, ..., N) and π is the index of one of the two possible axes of
the computational coordinate system, equal to

π = 













− 1

0

1
2

   

— for the angle coordinate ϕ in the polar, cylindrical, and spherical coordinate systems 
     in the calculation along the current radius r∗ ;
— for all the axes in the Cartesian coordinate system and for the longitudinal azis z
     in the cylindrical coordinate system;
— for the radial axis r in the cylindrical coordinate system;
— for the radial axis r in the spherical coordinate system.

In accordance with the π index introduced, the generalized coordinate xπ and the coefficients of the equation
kπ and bπ have the form

xπ = 











ϕ   at   π = − 1 ,
z    at   π = 0 ,
r    at   π ≥ 1 ;

     kπ = 











r
∗ π

   at   π = − 1 ,

r
π
    at   π ≥ 0 ;

     bπ = 











1 ⁄ r
∗
     at   π = − 1 ,

1 ⁄ kπ    at   π ≥ 0 .

Equations (4) are written in Cartesian or cylindrical (y = r) coordinates if the case in point is a process in a
matrix with straight channels, or in cylindrical or spherical coordinates (y = r) for a matrix with a packing. In the first
case, the region of integration of the heat-conduction equation is a rectangle (see Fig. 2b) with a width equal to one-
half the thickness of the wall and a height equal to the height of the matrix (the length of the channel). In the second
case, this region consists of a sequence of subregions, namely, individual cylinders or spheres.

The intensity of the local heat exchange between the gas (air) and the wall is determined by the heat flow,
defined by (3) and (3′) and appearing on the right side of energy equations (1) and (1′) as the term q and, in the heat-
conduction equation (4), as the mixed boundary conditions on the inner surface of the channel or on the surface of the
cylinders or spheres

− λm (θ) 
∂θ
∂y



 y=δ

 = q . (5)

1099



The influence of the edge effects on the temperature field along the length of the matrix is assumed to be small. Adi-
abatic boundary conditions are set at the lower and upper boundaries of the region (ends of the matrix), at the middle
point of the matrix wall thickness, or at the axis of the cylinders and spheres (elements of a packing). Let us write
them relative to the corresponding normal n:

− λm (θ) 
∂θ
∂n



 z=0,L;y=0

 = qb = 0 . (6)

The system of equations (1)–(4) is closed, in addition to conjugation conditions (5) and the conditions at the
outer boundaries (6), by the following equations:

on the ideal contact surface of the matrix material layers:

λlm (θ) 
∂θ
∂z



 z=zl

end
 = λl+1,m (θ) 

∂θ
∂z



 z=zl+1

in
 ,   l = 1, 2, ..., N − 1 ; (7)

for the local coefficients of heat-transfer between the gas (air) and the wall:

α = α (Nu, Gz, z ⁄ d, cross−section shape S) ; (8)

for the states of heat-transfer agents:

ρg = ρg (pg, ϑ)  ,   ρa = ρa (pa, t) ; (9)

for the thermophysical properties of the matrix:

cm = cm (θ) ,   λm = λm (θ) ,   ρm = ρm (θ) ; (10)

for the thermophysical properties of the heat-transfer agents:

cpg = cpg (ϑ)  ,   λg = λg (ϑ)  ,   µg = µg (ϑ)  ; (11)

cpa = cpa (t) ,   λa = λa (t) ,   µa = µa (t) ,   cv = cp − R . (12)

The local values of the heat-transfer coefficient are calculated with allowance for the shape of the cross sec-
tion of the channel or the type and dimension of the packing by the dependences [1, 2, 5, 22, 23] for the laminar,
transient, and turbulent regimes of flow at the initial stage of formation of the temperature profile and at the stage of
completely developed flow at a constant temperature.

The aerodynamic drag is determined by the generalized distribution of the coefficient of friction ζ =
λf∆z ⁄ d + ζl.d (accounting for the friction, the local drag, and the acceleration of the flow) over the length of the chan-
nel [2, 5, 22–24].

In the case of a quasistationary regime of flow, the initial conditions for the system of equations (1)–(4) are
formulated in the form of an approximate function of the z coordinate and are verified at the end of each characteristic
cycle. When the process of heating from the cold state is calculated, initial conditions are assumed to be constant:

for the energy- and mass-conservation equations

Gg (0, z) = Gg,in.c ,   pg (0, z) = pg,in.c ,   ϑ  (0, z) = ϑ in.c ;

Ga (0, z) = Ga,in.c ,   pa (0, z) = pa,in.c ,   t (0, z) = tin.c ;
(13)

for the heat-conduction equation
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θ (0, y, z) = θin.c . (14)

The boundary conditions are as follows:

Gg z=0 = Gg,inp
1

 ,   pg z=0 = pg,inp ,   ϑ z=0 = ϑinp − for the gas ;

Ga z=L = Ga,inp
1

 ,   pa z=L = pa,inp ,   t z=L = tinp − for the air .
(15)

Here Gg,inp
1  (Ga,inp

1 ) is the rate of the heat-transfer agent flow per elementary channel of the gas (air) sector. The pre-
scription of the flow rate at the input of the channel is only conditionally correct.

In accordance with the mathematical model, the temperature at the output of an individual channel and the
pressure drop along its length will constantly change. This is true for a periodic-operation regenerator. To determine
the temperature at the output of a continuous-operation regenerator, it is necessary to calculate the average integral
temperature of a heat-transfer agent at the output of an individual channel. The integration procedure is as follows:

ϑ
__

out = 







∫ 

0

τg

(Gcpϑ)g,out (τ) dτ






  ⁄ 







∫ 

0

τg

(Gcp)g,out (τ) dτ






 ,

t
_
out = 










     ∫ 

τg+τp

τg+τp+τa

   (Gcpt)a,out (τ) dτ









  ⁄ 










     ∫ 

τg+τp

τg+τp+τa

   (Gcp)a,out (τ) dτ









 .

(16)

Physically this means that flows of each heat-transfer agent in all the channels are mixed in the output pipe at a defi-
nite instant of time. The pressure drops in the gas ∆

__
pg and air ∆

__
pa paths of the matrix are determined analogously:

∆
__

pg = 
1
τg

 ∫ 
0

τg

∆pch,g (τ) dτ ,   ∆
__

pa = 
1
τa

     ∫ 
τg+τp

τg+τp+τa

   ∆pch,a (τ) dτ . (16′)

The efficiency of the regenerator was determined with account for the temperature dependence of the heat ca-
pacity, the change in the rates of flows in the packings, and the mass transfer in the matrix channels from the equa-
tions for ηg and ηa (the quantities ηg and ηa are not equal in the general case):

ηg = 
Qg

Qg
max = 

(Ggcpgϑ)av,inp − (Ggcpgϑ)av,out

(Ggcpgϑ)av,inp − (Ggcpgt)av,inp

 ,   ηa = 
Qa

Qa
max = 

(Gacpat)av,out − (Gacpat)av,inp

(Gacpaϑ)av,inp − (Gacpat)av,inp

 . (17)

Computational Algorithm. The system of equations (1)–(17) entering into the mathematical model is solved
by the finite-difference method [25, 26]. All the equations are approximated using the grids presented in Fig. 2b and
c, which are uniform within the matrix-material layer, one-dimensional in the z direction for flows, and two-dimen-
sional for the heat-conduction equation.

Finite-Difference Scheme for Solving the Heat-Conduction Equation. The two-dimensional heat-conduction
equation is solved using the locally one-dimensional method [26, 27] by repeated, successive solving one-dimensional
equations (see Fig. 2b and c). Below are finite-difference analogs of the nonlinear, one-dimensional heat-conduction
equation (4), obtained by the integro-interpolation method described in [25]. Hereinafter the expressions are written
with the following notation (see Fig. 2b and c): n and n + 1, previous and current time layers (n = 0, 1, 2, ...), the
index n + 1 will be frequently omitted for brevity; θi = θi

n+1 (i = m − 1, m, and m + 1 are used for the temperatures at
adjacent points and m = 1, 2, ..., M − 1; i = m − 1 ⁄ 2 and m + 1 ⁄ 2 are used for the temperatures and coefficients av-
eraged over the integration region); στ, Crank–Nicholson approximation parameter (στ = 1.0 for implicit schemes and
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στ = 0.5 for schemes of the second order of accuracy with respect to ∆τ). Patterns of the finite-difference schemes
used for solving the heat-conduction equation are presented in Fig. 3a. For brevity of representation of expressions, we
will omit the index π for x and b and the index l for the thermophysical properties of each of the layers.

On introduction of the notations

στ
−
 = 1 − στ ,   xm

%
 = xm%1 ⁄ 2 = xm % 0.5hm

%
 ,   km

%
 = (xm

%)π
 ;   γm

%
 = km

%λ (θm%1 ⁄ 2
n ) ;   dm = dm

−
 + dm

+
 ;

dm
%

 = c
%

 (θm
n ) ρm

%
hm
% ⁄ (2bm∆τ) ;   am

%
 = γm

% ⁄ hm
%

 ;   βm
%

 = στam
%

 ;   βm = dm + στ (am
−

 + am
+) ;

fm = − dmθm
n

 − στ
−
 [am

−θm−1
n

 − (am
−

 + am
+) θm

n
 + am

+θm+1
n

]

(18)

the finite-difference analog of the heat-conduction equation for the inner regions takes the form of a three-diagonal
system of algebraic equations relating the temperatures at three adjacent points:

βm
−θm−1 − βmθm + βm

+θm+1 = fm ,   m = 1, 2, ..., M − 1 . (19)

Using the equation of heat balance at the left boundary (n = −1) and dependence (3) for the heat flow, we
obtain an equation relating the temperatures at the zero and first points to the first run-through coefficients E1 and
U1:

θ0 = E1θ1 + U1 , (20)

where

E1 = β0
+ ⁄ B0 ;   U1 = (d0

+θ0
n
 + στk0αinΣ (τn+1) tin,b + Cin) ⁄ B0 . (21)

In expressions (21)

B0 = d0
+β0

+
 + στk0αinΣ (τn+1) ;   αinΣ = αin,b (τn+1) + αin,beam ;

Fig. 3. Patterns of the finite-difference scheme for the one-dimensional heat-
conduction equation (a) and the equation of energy and mass conservation for
the flows of heat-transfer agents (b).
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αin,beam = εin,r (θabs0
n

 + tabs,in,b) [(θabs0
n )2

 + (tabs,in,b)2] ;   Cin = στ
−
a0

+
 (θ1

n
 − θ0

n) + Cin,b ;

Cin,b = k0 



στqin,b (τn+1) + στ

−
 [qin,b (τn) − αin,b (τn) ((θ0

n
 − tin,b

n ) − εin,r (θabs0
n )4

 − (tabs,in,b)4)]



 .

Assuming that the temperature at the point m − 1 is related to the temperature at the point m (the temperatures
at the points 0 and 1 are related by (20)) as

θm−1 = Emθm + Um (22)

and substituting the above relation into (19), we obtain recurrence relations for the run-through coefficients

Em+1 = − βm
+  ⁄ Bm ;   Um+1 = (fm − βm

−
Um) ⁄ Bm ;   Bm = βm

−
Em − βm , (23)

by which one can successively calculate all the coefficients Em+1 and Um+1 (m = 1, 2, ..., M − 1) and thus determine
the relation between θM−1 and θM at the end right boundary when the temperatures at the points are unknown.

Using the equation of heat balance at the right boundary (n = 1) and relation (23) for the run-through coef-
ficients EM and UM, we can obtain a simple equation relating the temperature at the Mth point θM to the heat-transfer
agent temperature tend,b:

θM = Atend,b + B . (24)

The coefficients A and B are determined from the expressions

A = [στkMαendΣ (τn+1)] ⁄ C ,   B = [dM
− θM

n
 + βM

−
UM − Ck]

 ⁄ C , (25)

where

αendΣ (τn+1) = αend,b (τn+1) − εend,r (θabsM
n

 + tabs,end,b
∗ ) [(θabsM

n )2
 + (tabs,end,b)2

] ;

C = dM
−

 + βM
−

 (1 − EM) + στkMαendΣ (τn+1) ;   Cend = στ
−
aM

−
 (θM

n
 − θM−1

n ) + Cend,b ;

Cend,b = kM 



στqend,b (τn+1) + στ

−
 [qend,b (τn) + αend,b (τn) (θM

n
 − tend,b

n ) + εend,r (θabsM
n )4

 − (tabs,end,b
n )4)]




 .

In what follows, the coefficients A and B will be used in solving the finite-difference analogs of the energy equation
of flows.

Thus, we have obtained all the finite-difference analogs of the one-dimensional heat-conduction equation. They
are solved in three steps. First (forward run-through), the first run-through coefficients E1 and U1 are calculated for m
= 0 by formulas (21) at boundary conditions (6) and all the coefficients Em+1 and Um+1 are successively calculated for
m = 1, 2, ..., M − 1 by recurrence relations (23). Then the temperature θM at the end right boundary is determined. In
solving the ordinary problem along the z axis, the temperature θM is determined directly from (24) at tend,b

∗  = tend,b.
In solving the conjugate problem in the direction transverse to the z axis, this temperature is determined after the tem-
perature tend,b has been found from the energy equation for the gas flow at tend,b

∗  = tend,b
n  (see the section below). Fi-

nally, the temperature at all the other points is determined from relation (22) for m = M, M − 1, ..., 1 by backward
run-through.

Finite-Difference Analogs of the Energy- and Mass-Conservation Equations. Finite-difference analogs of
the energy- and mass-conservation equations (1) and (2) (for the gas) will be constructed by the implicit scheme with
weights στ and σz (σz

− = 1 − σz) [26]. For brevity of representation of expressions, we will omit the superscript n + 1
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for the current time layer and the subscripts g, p, and l. The symbols of operations are repeated in the next line. We
obtain (see the patterns in Fig. 3b) the following:

for the energy-conservation equation

Scvavi 



[σz (ρϑ) i + σz

−
 (ρϑ) i−1)] − [σz (ρϑ) i

n
 + σz

−
 (ρϑ)i−1

n )]



 ⁄ ∆τ +

+ 



στ [(Gcϑ) i − (Gcϑ) i−1] + στ

−
 [(Gcϑ) i

n
 − (Gcϑ) i−1

n
]



 ⁄ ∆z =

= Π 



στ [σzαi (θi − ϑ i) + σz

−αi−1 (θi−1 − ϑ i−1)] + στ
−
 [σzαi

n
 (θi

n
 − ϑ i

n) + σz
−αi−1

n
 (θi−1

n
 − ϑi−1

n )]



 , (26)

where the heat capacity averaged over the integration band i is approximated, at a constant volume, as

cvavi  = στ (σzci + σz
−
ci−1) + στ

−
 (σzci

n
 + σz

−
ci−1

n ) − R ;

for the mass-conservation equation

S [(σzρi + σz − ρi−1) − (σzρi
n
 + σz

−ρi−1
n )] ⁄ ∆τ + 




στ [Gi − Gi−1] + στ

−
 [Gi

n
 − Gi−1

n
]



 ⁄ ∆z = 0 ,

i = 1, 2, ..., I .

(27)

From here on we will consider only the direction along the flow, i.e., will solve the problem with respect to
the current output temperature ϑ i and the flow rate Gi at the ith point. Rearrangement of Eqs. (26) and (27) with the
use of Eq. (24) (θi = Aϑi + B) gives:

for the energy-conservation equation

ϑ i = 



S∆zcvavi [σz (ρϑ) i

n
 + σz

−
 (ρϑ) i−1

n
 − σz

−
 (ρϑ)i−1)] − 




στ

−
 [(Gcϑ) i

n
 − (Gcϑ) i−1

n
] − στ (Gcϑ) i−1




 ∆τ +

+ Π ∆z ∆τ 



στ [σzαiB + σz

−αi−1 (θi−1 − ϑ i−1)] + στ
−
 [σzαi

n
 (θi

n
 − ϑ i

n) + σz
−αi−1

n
 (θi−1

n
 − ϑ i−1

n )]



 ⁄ 




S∆zcvaviσzρi +

+ στ∆τ (Gc)i + Π ∆z ∆τ στσzαi (1 − A)


 ; (28)

for the mass-conservation equation

Gi = Gi−1 − 



στ

−∆τ [Gi
n
 − Gi−1

n
] + S ∆z [(σzρi + σz

−ρi−1) − (σzρi
n
 + σz

−ρi−1
n )]




 ⁄ στ ∆τ . (29)

Having determined the coefficients A and B by forward run-through of the heat-conduction equation, we may solve
these equations for the output temperature ϑi and flow rate Gi at all the points i = 1, 2, ..., I at corresponding iteration
approximations ϑi

∗  and ρi
∗  prescribed and refined in each integration band.

Let us investigate the limiting cases of relation (28) and verify it. This can be most simply done when this
relation is solved by the implicit scheme for the output point, i.e. (see Fig. 3b), at στ = 1, σi = 1, and cavi = ci. It is
evident that ϑ i → ϑ i

n  at very small steps approaching zero (∆τ → 0). At very large steps tending to infinity (∆τ → ∞),
corresponding to the case of asymptotic solution, (28) is rearranged into the balance equation 

ϑ i = [(Gcϑ) i−1 + Π ∆z αiB] ⁄ [(Gc)i + Π ∆z αi (1 − A)] . (30)

At flow rates approaching zero and finite (the channel is packed) or very large (α → ∞) heat-transfer coefficients, from
Eq. (30) we obtain
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TABLE 1. Comparison of the Data of Calculations of the Parameters of Gas-Turbine-Plant Regenerators with Various Matrices
by the Program Proposed (right column) with the Analogous Data of Other Authors (left column)

Parameter
Source of data compared

[2], pp. 343, 348 [21] [5], p. 163 [23], p. 320
Shape of the channel or type of the packing Spheres Triangular Triangular Gauze
Dimensions, mm or number of cells per meter
of the grid

Diameter
10

Side
0.76

Side
1.58 945×955

Thickness of the wall, mm 10 0.076 ⁄ 0.082 0.1 0.34
Material Granite Ceramics Steel Steel
Heat conduction, W/(m⋅K) 2.79 0.19 20—0.029θ 20.0

Heat capacity, J/(kg⋅K) 775 1089 500 500
Density, kg/m3 2630 2214 800 7817
Height of the matrix (length of the channel), m 2.0 0.0747 0.1655 0.0212
Total flow section, m2 0.2 0.2806 5.701 3.47
Part of the section occupied by the hot heat-
transfer agent/part occupied by the packing 0.5 ⁄ 0.0 0.49 ⁄ 0.05 0.62 ⁄ 0.035 0.715 ⁄ 0.0

The same for the cold heat-transfer agent 0.5 ⁄ 0.0 0.41 ⁄ 0.05 0.31 ⁄ 0.035 0.285 ⁄ 0.0
Rotational speed, rpm 0.5 15 15 26.5
Input gas flow rate, kg/sec 0.1 0.71 40.5 9.6425
Input gas pressure, Pa 100 000 105 000 103 000 105 000
Input gas temperature, oC 50 865 425 675
Input air flow rate, kg/sec 0.1 0.70 40.5 9.5
Input air pressure, Pa 100 000 393 000 497 000 329 000
Input air temperature, oC 50 204 215 168
Matrix porosity, % 0.4 0.4 0.710 0.710 — 0.812 0.725 0.725
Surface in 1 m3 of the volume, m2/m3 360 6460 6466 — 3561 3215 3235
Heat-exchange surface, m2 — 144 — 135.6 4180 4137 238 238
Matrix material mass (working), kg — 631.2 — 13.5 1672 1746 159 158
Heat output, kW — 0 — 475.7 6658 7025 — 4204
Output gas temperature, oC 50 50 266.4 259.1 270 274 244 280
Mean heat-transfer coefficient of the gas,
W/(m2⋅K) 100.2 102.0 — 419.1 187 177 687 707

Drag to the gas, kPa 3230 3216 6641 6827 3210 3112 1754 2006
Output air temperature, oC 50 50 824.4 825.1 372 381 598 584
Mean heat-transfer coefficient of the air,
W/(m2⋅K) 100.2 103.4 — 406.9 161 167 1050 1077

Drag to the air, kPa 3230 3219 1950 1990 1320 1310 2273 2233
Efficiency by the temperature, % — — 0.938 0.940 0.748 0.790 0.820 0.924
Efficiency by the heat balance, % — — — 0.936 — 0.787 — 0.824
Calculated number of complete cycles — 22 — 48 — 40 — 30
Heat imbalance in the finite cycle, % — — — –0.12 — 0.021 5.5 –0.02

Note. As in other works, the calculations were carried out without regard for the leakages and flows of heat-
transfer agents in the matrix.

[2], isothermal blow through the spheres packed in a random way; the conditional heating cycle was calculated
by the thermophysical properties determined by the authors, and the corresponding cooling cycle was calculated by the
program.

[21], air was used as a heat-transfer agent, since a ratio between the heat capacities of the heat transfer agents
of 1.02 was used by the authors and the air excess was not indicated; the thickness of the wall was corrected to the
coincidence with respect to the porosity.

[5], the thermophysical properties were calculated because the authors did not present data on the air excess,
and the air heat capacity estimated by the heat balance was equal to 1047.

[23], the calculated model is a gauze packing of wires with heat-insulated ends; the heat imbalance was esti-
mated by the data of the authors and was 5.5%.
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ϑ i = B ⁄ (1 − A) = θi , (31)

since, at θi = ϑ i, relation (24) (θi = Aϑi + B) takes the form

ϑ i = Aϑ i + B ,   or   ϑ i (1 − A) = B ,   or   ϑ i = B ⁄ (1 − A) . (32)

The temperatures at the adjacent points of the flow ϑ i and the wall θi tend, according to (31), to equalize. Conse-
quently, Eq. (28) can be used for calculation of a packed channel in which the rate of flows is zero.

In the case of nonzero flow rates, Eq. (30) takes the form

(Gcϑ)i − (Gcϑ) i−1 = Π ∆z αi [B − (1 − A) ϑ i] = Π ∆z αi [θi − ϑ i] . (33)

This is an ordinary balance equation in which heat accumulation is not taken into account. It is this form of equation
(28) (at ∆τ → ∞) that allows one to fairly accurately estimate the initial temperature (and pressure) (13) of the heating
and cooling cycles under quasistatic operating conditions.

Algorithm for Solving the Conjugate Problem. It is proposed to solve the system of equations of the con-
jugate problem by a modified method of run-through in conjugate directions [28]. Below is a description of this
method.

For a matrix with straight channels, we will perform forward and backward run-through along the z coordinate
for all the layers j = 0, 1, 2, ..., J forming its thickness. When conditions (6) are set at the ends of the matrix, this
run-through is not related to the flows of heat-transfer agents. The intermediate temperature field obtained is not a
physical solution. This operation will be omitted for matrices packed with particles.

Then we will perform forward run-through along the y coordinate, which is perpendicular to the gas flow,
from the zero point at the heat-insulated boundary to the δ point at the channel wall around which the gas flows. At
the above-indicated boundary conditions (with the difference that, in the input cross section, i = 0 for the gas and i =
I for the air), backward run-through begins with determination of the temperature at the end point (i, J) of the wall by
formula (24). As for the other points i, this formula only relates the wall temperature θi,J to the gas temperature ϑ i.
In combination with energy equation (26), we have two equations for determining these two unknown temperatures.
Thus, the temperature of the flow at the output point ϑ i (relation (28)) and the temperature at the boundary point of
the matrix θi,J (relation (24)) can be determined. Thereafter, by backward run-through of (22) in the y direction, we
determine the inner temperatures of the wall θi,J at all the ith points of the grid.

Then we may pass to the next (in the direction of the gas flow) grid layer i + 1. Determination of the tem-
peratures of the gas and the matrix wall in the time layer n + 1 at all the points of the grid completes the calculation
at the current time step ∆τ. These temperature fields represent a physical solution. After the parameters of the (n + 1)th
layer are given to the nth layer, one may pass to the calculation at the next time step. This algorithm is repeated
within the cycle (revolution) τc considered and within the entire set of cycles prescribed.

Examples of Investigations. Examples of concrete comprehensive investigations of the dynamic and quasista-
tionary operating conditions of continuous-operation generators of gas-turbine plants, carried out by the program based
on the above-described mathematical model and algorithm, will be given in the second part of our work. Examples of
investigations of an atmospheric-pressure regenerator with a matrix packed with various bodies and an intermediate
gas-turbine plant regenerator are given in [29, 30].

The data of calculations of the parameters of regenerators with matrices of four types by the mathematical
model and program developed by us and the known data of other authors [2, 5, 21, 23] obtained with the use of dif-
ferent quasistationary, classical analytical models are presented in Table 1. The examples were selected strictly by the
completeness of the initial data presented; however, some of the data [5, 21] have to be determined or recalculated. In
our investigations carried out with the use of the above-described nonlinear, distributed mathematical model based on
the calculation of the local heat-transfer coefficients and aerodynamic drags by the above-indicated empirical depend-
ences, we tried to most closely comply with the formulation of the problem given by the authors of the data com-
pared. For the regenerators considered in [5] and [21], the thermophysical properties of the heat-transfer agents were
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determined by the polynomial approximations involved in the program, since the corresponding data of the authors of
these works are incomplete [5] or are absent [21]. Any correction factors were not introduced.

A comparison of the data, given at the bottom of Table 1, where they are separated by an additional line,
shows that the data of our calculations of the design characteristics (heating surface, matrix mass) and parameters
(heat-transfer coefficient, aerodynamic drag, degree of regeneration) of the regenerators considered are in satisfactory
agreement with the corresponding data of other authors. It should be noted that the heat balance was calculated with
a high degree of accuracy for the prescribed limiting rotational speed of the rotor in the case of heating from the cold
state. This comparison of the data obtained with the use of the mathematical model proposed with the data obtained
with simplified analytical quasistationary models, carried out with an example of not very complex calculations, can be
considered as a good verification of this model.

CONCLUSIONS

A nonlinear, variable model based on the system of equations of mass and energy transfer in heat-transfer
agents and the equation of heat conduction in a two-dimensional matrix wall has been developed for investigating the
heat and aerodynamic processes in regenerative heat exchangers of continuous and periodic operation. Finite-difference
schemes of equations and a convenient numerical algorithm based on successive runs-through in the directions longi-
tudinal and transverse with respect to the flow, which eliminates global iterations in solving the conjugate problem of
nonstationary heat exchange and allows one to calculate the heat balance with a high degree of accuracy, are proposed.
A satisfactory agreement of the data of our calculations of the design characteristics and all the main parameters of the
regenerators considered with the corresponding data of other authors has been demonstrated with an example of not
very complex calculations that can be done with the use of classical, analytical quasistationary models, which is evi-
dence of the correctness of the basic notions used in the model proposed.

NOTATION

A, B, linear coefficients for the heat-conduction equation; a, b, C, sets of "grid" parameters; c, heat capacity,
J/(kg⋅K); d = 4S/P, hydraulic diameter of the channel, m; E, run-through coefficient for the heat-conduction equation;
f, set of grid parameters; G, flow rate, kg/sec; Gz = Re Pr d/L, Graetz criterion; h, step of integration with respect
to x, m; I, number of bands of integration with respect to z; J, number of bands of integration with respect to y; k,
set of grid parameters; L, length of the channel, m; M, total number of grid points for the heat-conduction equation
(numbering begins with 0); m, current number of a grid point for the heat-conduction equation; N, number of matrix-
material layers; Nu = αd ⁄ λ, Nusselt criterion; n, vector normal to the surface; Pr = µcp

 ⁄ λ, Prandtl criterion; p, pres-
sure, Pa; Q, heat flow, W; q, specific heat flow, W/m2; R, gas or air constant; J/(kg⋅K); Re = wd/ν, Reynolds
criterion; r, radial coordinate, m; S, cross section of the channel, m2; t, air temperature, oC; U, run-through coefficient
for the heat-conduction equation; w, velocity of the flow in the channel (in the z direction), m/sec; x, generalized co-
ordinate, m; y, coordinate perpendicular to the flow, m; z, coordinate parallel to the flow, m; α, heat-transfer coeffi-
cient, W/(m2⋅K); β, γ, sets of grid parameters; ∆, difference or space step; ∆p, pressure drop, Pa; ∆y and ∆z, steps of
integration over the thickness and the length, m; ∆τ, step of integration with respect to time, sec; δ, calculated thick-
ness of the channel wall, m; ε, degree of blackness; ζ, limited coefficient of friction; η, coefficient of heat efficiency;
θ, temperature of the matrix wall, oC; ϑ , temperature of the gas, oC; λ, heat-conduction coefficient, W/(m⋅K); µ, dy-
namic viscosity, Pa⋅sec; ν = µ ⁄ ρ, kinematic viscosity, m2/sec; Π, perimeter of the channel, m; π, index of a coordinate
axis; ρ, density, kg/m3; σ, approximation parameter of a scheme; σ0, Boltzmann constant; τ, time, sec; ϕ, angular co-
ordinate. Subscripts: abs, absolute temperature scale; a, air; inp, input; out, output; g, gas; b, boundary; ray, radiation;
m, matrix material; l.d, local drag; in, initial; in.c, initial condition; end, end; r, reduced; av, average; f, friction; p,
packing; c, cycle; I, number of the end point on the z coordinate; i, number of a point on the z coordinate; J, number
of the end point on the y coordinate; j, number of a point on the y coordinate; l, number of a matrix-material layer;
M, number of the end point for the heat-conduction equation; m, number of the current point for the heat-conduction
equation; p, constant pressure; v, constant volume; π, current coordinate axis; Σ, summarized value; n, number of a
time step; max, maximum; ch, channel; 1, individual channel; %1/2, values averaged over a band; overscribed bar, av-
erage integral value; *, predicted value; plus (+), to the right of a point; minus (−), to the left of a point.
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